SCons Build Script Generator¶
lbuild module: modm:build:scons
SCons is a software construction build system written in Python. For a better embedded experience, we've extended it with modm-specific build tools.
This module generates two files:
- a
modm/SConscript
file: configures all required SCons tools with the right settings (also using information from themodm:build
module) to compile the modm library. - a top-level BSD-licensed
SConstruct
file: configures additional, optional tools and sets up all the relevant SCons functions for your target.
The SConscript
file is self contained and does not depend on anything outside of
the modm/
directory. This allows it to be combined with SConscript
of other
projects without clashing.
In fact, if you look at your generated SConstruct
file, you'll notice that
it doesn't contain a lot of logic or specific data, it is only meant for calling
the right SCons tool with the right arguments.
We do not intend to serve every possible use-case with this module. If you need something special, write your own SConstruct file, maybe starting by modifying ours. It is intentionally BSD-licensed so that you do not have to publish your changes to it.
Remember to set modm:build:scons:include_sconstruct
to False
, so that your
custom SConstruct
does not get overwritten by lbuild build
.
See the instructions inside our generated default SConstruct
file.
SCons Methods¶
This module generates these SCons methods depending on the target.
scons¶
Defaults to scons build size.
You can add these arguments to any of the SCons commands:
verbose=1
: gives a more verbose output, so you can, for example, check what options the compiler is called with.profile=release
: Compile project with the release profile options (default).profile=debug
: Compile project with the debug profile options.
For a description of the release
and debug
profiles, see the modm:build
module documentation.
Debug Profile
When working with the debug profile, make sure to add profile=debug
to all
commands, especially scons program profile=debug
and
scons debug profile=debug
!
Some SCons commands take a firmware={GNU Build ID or path/to/firmware.elf}
argument that specifies which firmware to use for the command. It is useful in
combination with the scons artifact
command to preserve a specific firmware
version for later.
scons build¶
scons build profile={debug|release}
Compiles your application into an executable.
Example for a STM32 target:
$ scons build
Compiling C++·· {debug|release}/main.o
Compiling C···· {debug|release}/modm/ext/gcc/cabi.o
...
Compiling C++·· {debug|release}/modm/src/modm/utils/dummy.o
Archiving······ {debug|release}/modm/libmodm.a
Indexing······· {debug|release}/modm/libmodm.a
Linking········ /build/{debug|release}/blink.elf
scons -c¶
scons -c profile={debug|release}
Cleans the build artifacts.
$ scons -c
Removed {debug|release}/main.o
Removed {debug|release}/modm/ext/tlsf/tlsf.o
...
Removed {debug|release}/modm/src/modm/ui/display/virtual_graphic_display.o
Removed {debug|release}/modm/src/modm/utils/dummy.o
Removed {debug|release}/modm/libmodm.a
Removed {debug|release}/blink.elf
Removed {debug|release}/blink.lss
scons size¶
scons size profile={debug|release} [firmware={hash or file}]
Displays the static Flash and RAM consumption of your target.
Example for a STM32 target with 16MB external heap:
$ scons size
Memory usage··· /build/{debug|release}/blink.elf
Program: 12.8 KiB (0.6% used)
(.data + .fastcode + .fastdata + .hardware_init + .reset + .rodata +
.table.copy.extern + .table.copy.intern + .table.section_heap +
.table.zero.intern + .text)
Data: 5.8 KiB (1.5% used) = 2936 B static (0.7%) + 3040 B stack (0.8%)
(.bss + .data + .fastdata + .stack)
Heap: 16.4 MiB
(.heap0 + .heap1 + .heap2 + .heap3 + .heap5 + .heap_extern)
scons program¶
scons program profile={debug|release} [firmware={hash or file}]
Writes the executable onto your target via Avrdude or OpenOCD.
This is a convenience wrapper around the programming options and methods
defined in the modm:build
module.
(* only AVR and ARM Cortex-M targets)
Example for a STM32 target:
$ scons program
╭────────────── /build/{debug|release}/blink.elf
╰───OpenOCD───> stm32f469nih
Open On-Chip Debugger 0.10.0
...
Info : using stlink api v2
Info : Target voltage: 3.259396
Info : stm32f4x.cpu: hardware has 6 breakpoints, 4 watchpoints
...
** Programming Started **
auto erase enabled
Info : device id = 0x10006434
Info : flash size = 2048kbytes
Info : Dual Bank 2048 kiB STM32F42x/43x/469/479 found
...
wrote 16384 bytes from file {debug|release}/blink.elf in 0.589736s (27.131 KiB/s)
** Programming Finished **
** Verify Started **
verified 13064 bytes in 0.296308s (43.056 KiB/s)
** Verified OK **
shutdown command invoked
scons program-fuses¶
scons program-fuses profile={debug|release} [firmware={hash or file}]
Writes all fuses onto your target connected to avrdude. See the
modm:platform:core
module for how to define the fuse values.
(* only AVR targets)
scons program-dfu¶
scons program-dfu profile={debug|release} [firmware={hash or file}] [delay={seconds}]
Writes the executable onto your target via Device Firmware Update (DFU) over USB. A DFU bootloader is available on many STM32 microcontrollers and can be accessed by pressing the BOOT0-Button during startup.
Some DFU devices require additional delay to re-enumerate, which you can specify
with the delay
parameter (default is 5 seconds).
(* only ARM Cortex-M targets)
$ scons program-dfu
Binary File···· /build/{debug|release}/blink.bin
╭────────────── /build/{debug|release}/blink.bin
╰─────DFU─────> stm32f469nih
dfu_stm32_programmer: program /build/{debug|release}/blink.bin
dfu-util 0.9
Opening DFU capable USB device...
ID 0483:df11
Run-time device DFU version 011a
Claiming USB DFU Interface...
Determining device status: state = dfuIDLE, status = 0
dfuIDLE, continuing
DFU mode device DFU version 011a
Device returned transfer size 2048
DfuSe interface name: "Internal Flash "
Memory segment at 0x08000000 4 x 16384 = 65536 (rew)
Memory segment at 0x08010000 1 x 65536 = 65536 (rew)
Memory segment at 0x08020000 1 x 131072 = 131072 (rew)
Downloading to address = 0x08000000, size = 2060
Download [ ] 0% 0 bytes Poll timeout 100 ms
Poll timeout 0 ms
Download from image offset 00000000 to memory 08000000-080007ff, size 2048
Poll timeout 104 ms
Poll timeout 0 ms
Download from image offset 00000800 to memory 08000800-0800080b, size 12
Poll timeout 104 ms
Poll timeout 0 ms
File downloaded successfully
Poll timeout 104 ms
Poll timeout 0 ms
Transitioning to dfuMANIFEST state
scons: done building targets.
scons program-bmp¶
scons program-bmp profile={debug|release} port={serial-port} [firmware={hash or file}]
Black Magic Probe is convenient tool to convert cheap USB ST-LINK V2 clones to a fully functional GDB compatible debug adaptor for ARM Cortex microcontrollers. GDB can directly communicate with the debug adaptor making debugging easy and accessible. (* only ARM Cortex-M targets)
Black Magic Probe creates two serial devices, the first being the GDB interface and the second a plain serial adaptor for debugging purposes.
$ ls -l /dev/tty.usb*
crw-rw-rw- 1 root wheel 21, 104 Feb 19 09:46 /dev/tty.usbmodemDEADBEEF
crw-rw-rw- 1 root wheel 21, 106 Feb 19 09:46 /dev/tty.usbmodemDEADBEF1
You can let the tool guess the port or explicitly specify it:
$ scons program-bmp port=/dev/tty.usbmodemDEADBEEF
╭─Black─Magic── /build/{debug|release}/blink.elf
╰────Probe────> stm32f103rbt6
Remote debugging using /dev/tty.usbmodemDEADBEEF
Target voltage: unknown
Available Targets:
No. Att Driver
1 STM32F1 medium density
Attaching to Remote target
warning: No executable has been specified and target does not support
determining executable automatically. Try using the "file" command.
0x0800038e in ?? ()
Loading section .vector_rom, size 0xec lma 0x8000000
[...]
Loading section .table.section_heap, size 0xc lma 0x80013f8
Start address 0x8000e6c, load size 5120
Transfer rate: 10 KB/sec, 365 bytes/write.
Detaching from program: , Remote target
[Inferior 1 (Remote target) detached]
scons: done building targets.
scons program-remote¶
scons program-remote profile={debug|release} [host={ip or hostname:port}] [firmware={hash or file}]
Writes the executable onto your target connected to a remote backend process
running on your own computer (host=":3333"
) or somewhere else. You can also
connect to JLink (host=":2331"
) or Black Magic Probe (host="/dev/tty.usbserial"
).
(* only ARM Cortex-M targets)
scons program-jlink¶
scons program-jlink profile={debug|release} [firmware={hash or file}]
Writes the executable onto your target via JLink.
This is a convenience wrapper around the programming options and methods
defined in the modm:build
module.
(* only ARM Cortex-M targets)
Example for a STM32 target:
$ scons program-jlink
╭────────────── /build/{debug|release}/blink.elf
╰────JLink────> stm32l476rgt6
SEGGER J-Link GDB Server V7.84f Command Line Version
JLinkARM.dll V7.84f (DLL compiled Feb 7 2023 16:45:51)
-----GDB Server start settings-----
GDBInit file: none
GDB Server Listening port: 2331
SWO raw output listening port: 2332
Terminal I/O port: 2333
Accept remote connection: yes
Generate logfile: off
Verify download: off
Init regs on start: off
Silent mode: on
Single run mode: off
Target connection timeout: 0 ms
------J-Link related settings------
J-Link Host interface: USB
J-Link script: none
J-Link settings file: none
------Target related settings------
Target device: stm32l476rg
Target device parameters: none
Target interface: SWD
Target interface speed: 4000kHz
Target endian: little
warning: Source file is more recent than executable.
Resetting target
scons: done building targets.
scons openocd¶
scons openocd
Starts an OpenOCD process to attach a remote debugger to (e.g. with
scons program-remote
or scons debug-remote
).
(* only ARM Cortex-M targets)
scons jlink¶
scons jlink
Starts a JLinkGDBServer process to attach a remote debugger to (e.g. with
scons program-remote
or scons debug-remote
).
(* only ARM Cortex-M targets)
scons run¶
Compiles and executes your program on your computer. (* only Hosted targets)
scons debug¶
scons debug profile={debug|release} ui={tui|gdbgui} [firmware={hash or file}]
Launches OpenOCD in the background, then launches GDB in foreground with the correct executable with text-based or web-based GDBGUI UI. When GDB exits, it stops the OpenOCD process. (* only ARM Cortex-M targets)
This is just a convenience wrapper for the debug functionality defined in the
modm:build
module. To use GDBGUI you must have it installed via
pip install gdbgui
.
Choose the correct profile
When debugging, make sure to select the correct compilation profile. The
firmware and the executable given to GDB have to be the same or you'll see
GDB translate the program counter to the wrong code locations. When you
suspect a bug in your firmware, consider that it was most likely compiled
with the release profile, since that's the default. First try to scons
debug profile=release
, and if that doesn't help, compile and scons
program profile=debug
and try scons debug profile=debug
again.
scons debug-remote¶
scons debug-remote profile={debug|release} ui={tui|gdbgui} [host={ip or hostname:port}] [firmware={hash or file}]
Debugs the executable via a remote OpenOCD process running on your own computer
(host=":3333"
) or somewhere else. You can also connect to JLink (host=":2331"
)
or Black Magic Probe (host="/dev/tty.usbserial"
).
(* only ARM Cortex-M targets)
scons debug-bmp¶
scons debug-bmp profile={debug|release} ui={tui|gdbgui} port={serial-port} [firmware={hash or file}]
Launches GDB to debug via Black Magic Probe. (* only ARM Cortex-M targets)
scons debug-jlink¶
scons debug-jlink profile={debug|release} ui={tui|gdbgui} [firmware={hash or file}]
Launches GDB to debug via JLink. (* only ARM Cortex-M targets)
scons debug-coredump¶
scons debug-coredump profile={debug|release} ui={tui|gdbgui} \
coredump={path/to/coredump.txt} \
[firmware={GNU Build ID or path/to/firmware.elf}]
Launches GDB for post-mortem debugging with the firmware identified by the
(optional) firmware={hash or filepath}
argument using the data from the
coredump={filepath}
argument. Note that CrashDebug must be in your path, see
the modm:crashcatcher
module for details.
Use the scons coredump
method to generate a coredump with a debugger attached,
otherwise see the modm:platform:fault
module for details how to generate and
receive the coredump data from the device itself.
(* only ARM Cortex-M targets)
scons coredump¶
scons coredump
Launches GDB via OpenOCD and creates a coredump.txt
file containing all
volatile memories and prints the GNU build ID of the firmware under debug.
Note that this command does not require an ELF file, so it can be used to
coredump any firmware whose ELF file is currently unavailable.
You can use the GNU build ID to find the corresponding ELF file in your
artifact store (see scons artifact
).
(* only ARM Cortex-M targets)
scons coredump-bmp¶
scons coredump-bmp port={serial-port}
Creates a coredump via Black Magic Probe. (* only ARM Cortex-M targets)
scons coredump-jlink¶
scons coredump-jlink
Creates a coredump via JLink. (* only ARM Cortex-M targets)
scons reset¶
scons reset
Resets the executable via OpenOCD. (* only ARM Cortex-M targets)
scons reset-bmp¶
scons reset-bmp port={serial-port}
Resets the executable via Black Magic Probe. (* only ARM Cortex-M targets)
scons reset-jlink¶
scons reset-jlink
Resets the executable via JLink. (* only ARM Cortex-M targets)
scons reset-remote¶
scons reset-remote [host={ip or hostname:port}]
Resets the executable via a remote OpenOCD process running on your own computer
(host=":3333"
) or somewhere else. You can also connect to JLink (host=":2331"
)
or Black Magic Probe (host="/dev/tty.usbserial"
).
(* only ARM Cortex-M targets)
scons log-itm¶
scons log-itm fcpu={HCLK in Hz}
Configures OpenOCD in tracing mode to output ITM channel 0 on SWO pin and displays the serial output stream. (* only ARM Cortex-M targets)
$ scons log-itm fcpu=64000000
╭───OpenOCD───> Single Wire Viewer
╰─────SWO────── stm32f103rbt6
Open On-Chip Debugger 0.10.0
Licensed under GNU GPL v2
Info : The selected transport took over low-level target control.
loop: 57
loop: 58
loop: 59
loop: 60
loop: 61
See the modm:platform:itm
module for details how to use the ITM as a logging
output.
scons log-itm-jlink¶
scons log-itm-jlink [channel={int}]
Outputs the ITM channel via JLinkSWOViewer. Note that JLink auto-detects the CPU frequency. (* only ARM Cortex-M targets)
scons log-rtt¶
scons log-rtt [channel={int}]
Configures OpenOCD in RTT mode to output the chosen channel (default 0) via a simple telnet client. Disconnect with Ctrl+D. (* only ARM Cortex-M targets)
$ scons log-rtt
╭───OpenOCD───> Real Time Transfer
╰─────RTT────── stm32f103rbt6
Info : rtt: Searching for control block 'SEGGER RTT'
Info : rtt: Control block found at 0x20000008
loop: 57
loop: 58
loop: 59
loop: 60
loop: 61
See the modm:platform:rtt
module for details how to use RTT for data transfer.
scons log-rtt-jlink¶
scons log-rtt-jlink [channel={int}]
Configures JLink in RTT mode to output the chosen channel (default 0) via a simple telnet client. Disconnect with Ctrl+D. (* only ARM Cortex-M targets)
scons library¶
scons library profile={debug|release}
Generates only the static library libmodm.a
without linking it to the
application.
$ scons library
Compiling C++·· {debug|release}/modm/ext/gcc/assert.o
...
Compiling C++·· {debug|release}/modm/src/modm/utils/dummy.o
Archiving······ {debug|release}/modm/libmodm.a
Indexing······· {debug|release}/modm/libmodm.a
scons symbols¶
scons symbols profile={debug|release} [firmware={hash or file}]
Dumps the symbol table for your executable.
$ scons symbols [firmware={hash or file}]
Show symbols for '{debug|release}/blink.elf':
536871656 00000001 b (anonymous namespace)::nextOperation
536871657 00000001 b (anonymous namespace)::checkNextOperation
536871658 00000001 b (anonymous namespace)::error
536871444 00000001 b read_touch()::initialized
...
134228236 00000668 T I2C1_EV_IRQHandler
134224924 00001136 T otm8009a_init(unsigned char)
134221192 00001378 t _GLOBAL__sub_I_p
536871782 00002054 b (anonymous namespace)::txBuffer
scons listing¶
scons listing profile={debug|release} [firmware={hash or file}]
Decompiles your executable into an annotated assembly listing. This is very useful for checking and learning how the compiler translates C++ into assembly instructions:
$ scons listing
Listing········ {debug|release}/blink.lss
$ less {debug|release}/blink.lss
...
Disassembly of section .text:
...
08000d74 <main>:
main():
./main.cpp:315
int
main()
{
8000d74: b508 push {r3, lr}
Board::initialize();
8000d76: f7ff fcc9 bl 800070c <_ZN5Board10initializeEv>
Board::initializeDisplay();
8000d7a: f000 fd91 bl 80018a0 <_ZN5Board17initializeDisplayEv>
Board::initializeTouchscreen();
8000d7e: f7ff fc55 bl 800062c <_ZN5Board21initializeTouchscreenEv>
blink();
8000d82: f7ff feff bl 8000b84 <_Z12blinkv>
...
scons bin¶
scons bin profile={debug|release} [firmware={hash or file}]
Creates a binary file of your executable.
$ scons bin
Binary File···· {debug|release}/blink.bin
scons hex¶
scons hex profile={debug|release} [firmware={hash or file}]
Creates a Intel-hex file of your executable.
$ scons hex
Hex File······· {debug|release}/blink.hex
scons uf2¶
scons uf2 profile={debug|release} [firmware={hash or file}]
Creates a UF2 compatible file of your executable. UF2 is a bootloader by Microsoft.
$ scons uf2
UF2 File······· {debug|release}/blink.uf2
(* only ARM Cortex-M targets)
scons artifact¶
scons artifact profile={debug|release}
Caches the ELF and binary file of the newest compiled executable identified by
the hash of the binary file in artifacts/{hash}.elf
. You can change this path
with the modm:build:scons:path.artifact
option.
$ scons artifact
╭───Artifact─── /build/release/blink.elf
╰────Cache────> artifacts/0214523ab713bc7bdfb37d902e65dae8305f4754.elf
scons qtcreator¶
Generates several files so that the project can be imported into Qt Creator via
the .creator
file importer. Note, that no compiliation or debugging features
are supported, this is only meant for using the IDE as an editor.
Consider this an unstable feature
Protobuf Generator Tool¶
The modm:nanopb
module contains a Python generator to translate the messages
defined in *.proto
files by the modm:nanopb:source
option into *.pb.cpp
and *.pb.hpp
files.
This module contains a SCons wrapper tool that automatically updates the
generated files when it becomes necessary:
cpp_sources += env.NanopbProtofile(
sources=options[":nanopb:sources"],
path=options[":nanopb:path"],
)
The generated files are available as a top-level #include <protofile.pb.hpp>
.
XPCC Generator Tool¶
The modm:communication:xpcc:generator
module contains the Python tools to
translate the XPCC XML declarations into various language implementations.
This module contains a SCons wrapper tool, that understands the XML dependencies
and automatically updates the generated files when it becomes necessary.
The wrapper tool is automatically used when the generator module is detected, and its options are evaluated for the wrapper as follows:
cpp_sources += env.XpccCommunication(
xmlfile=options["::xpcc:generator:source"],
container=options["::xpcc:generator:container"],
path=options["::xpcc:generator:path"],
namespace=options["::xpcc:generator:namespace"]
)
The generated files are available as a top-level #include <identifiers.hpp>
.
Information Tool¶
Our info
SCons tool generates a set of header files containing information
about the repository state.
A call to env.InfoGit(with_status={True, False})
will generate a <info_git.h>
header file and add these two defines to the command line CPP options:
MODM_GIT_INFO
MODM_GIT_STATUS
: defined only if called withwith_state=True
.
You can enable this by setting the modm:build:info.git
option.
Increased build time
Since the git repository status can change at any time, it needs to be checked on every build. This adds less than a second to every build.
A call to env.InfoBuild()
will generate a <info_build.h>
header file and add
this define to the command line CPP options:
MODM_BUILD_INFO
You can enable this by setting the modm:build:info.build
option.
Respect developers privacy
This information is placed into the firmware in cleartext, so it will be trivial to extract from a memory dump. Consider this information public as soon as it is uploaded to your target. Make sure you only use the information you absolutely need!
Bitmap Tool¶
If the modm:build:image.source
is defined as a path, it'll be searched
for .pbm
files to convert into C++ data files using the bitmap
tool:
source, header = env.Bitmap(bpm_file)
See the GraphicsDisplay::drawImage()
method in the modm:ui:display
module
for how to use these generated files.
The directory is added to the include search paths, so the generated files
can be accessed as #include <image.hpp>
.
Options¶
cache_dir¶
Path to SConstruct CacheDir
If value is $cache
, the cache is placed into the top-level build/
folder.
You can disable CacheDir by setting an empty string.
Default: []
Inputs: [Path]
include_sconstruct¶
Generate a SConstruct file
This overwrites any top-level SConstruct
file!
Default: yes
Inputs: [yes, no]
path.artifact¶
Path to Artifact Store
The artifact folder contains ELF files named by their GNU build id hash. This allows identification of firmware on the device via serial output and is useful for archiving or post-mortem debugging.
Default: artifacts
Inputs: [Path]
Collectors¶
flag_format¶
Formatting compile flags for SCons
Inputs: [Callable]
path.tools¶
SCons tool paths to be added to the Environment
Inputs: [Path]
tools¶
SCons tools to be added to the Environment
Inputs: [String]